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Researchers and social scientists frequently 
confront data analysis situations for which ex- 
isting theory provides little or no guidance con- 

cerning either the determinants of the dependent 
variable of interest or the nature of the rela- 
tionships among variables. In such situations, 
researchers must rely upon a combination of intu- 
ition, previous empirical studies, theory, and 
exploratory data analysis in order to select an 
appropriate subset of explanatory variables and a 
model which adequately describes relationships 
among them. The present paper is concerned with 
techniques which may be used in the exploratory, 
model- building stage of research to analyze mul- 
ti dimensional contingency tables. 

We begin with a brief overview of model se- 
lection procedures for contingency table data. 
Four procedures are examined in detail; they are: 

1. Stepwise backward elimination of parame- 
ters from a saturated model; 

2. Stepwise backward elimination of parame- 
ters from a homogeneous baseline model; 

3. Stepwise forward selection from a homo- 
geneous baseline model; 

4. Direct estimation, in which terms are 
eliminated from a saturated model based 
upon tests of significance of standard- 
ized parameter estimates. 

The procedures are evaluated using Monte 
Carlo simulation techniques. We first specify a 
true model characterizing a hypothetical popula- 
tion and then analyze repeated samples generated 
from the hypothetical population. Because the 
true model is known, the results permit compari- 
son of selection procedures. The following ques- 

tions are considered: 
1. How adequate are the various model se- 

lection techniques? That is, how likely 
is each to lead to the selection of the 
"true" model, when the true model is 

known? 
2. What are appropriate criteria for an ac- 

ceptable model? In particular, how well 
should a model fit in order to be con- 
sidered acceptable? 

3. How much confidence should be placed in 
the results of applying selection proce- 
dures when samples are small? Does the 

adequacy of the techniques depend upon 
the nature of the underlying population 
model? 

Overview of Model Selection Procedures 

In developing a model to describe a set of 
data, the researcher first identifies a set of 
variables for inclusion in the analysis and then 
specifies the model or equation relating the 
variables. We assume here that an appropriate 
set of variables has been identified, and consid- 

er techniques to identify a good fitting, parsi- 
monious model to account for the data. A variety 
of statistical procedures to select log linear 
models have been developed to assist the 
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researcher in the decision. (See e.g. Goodman 
1971, 1973, Birch 1964, Bishop, Fienberg, and 

Holland 1975, and Brown 1976.) The search proce- 
dures vary in several key ways. 

Stepwise versus simultaneous tests of parame- 
ters may be employed to eliminate or add terms to 
a model. Stepwise selection requires a test for 
each parameter to be included in or deleted from a 
model, while simultaneous procedures test multiple 
effect parameters simultaneously, and thus require 
fewer tests to select a final model. Goodman 
(1973) suggests that simultaneous tests may be em- 
ployed as an initial screening procedure to elimi- 
nate some models from consideration before apply- 
ing stepwise procedures. As with linear regres- 
sion, forward or backward stepwise procedures may 
be employed. Forward selection involves stepwise 
addition of effect parameters to a model according 
to some criterion of statistical importance, while 
backward elimination "prunes" a saturated model by 
sequential deletion of parameters whose estimated 
values are statistically insignificant. Goodman 
(1971, p. 45) cites Draper and Smith (1966) to 

suggest that backward elimination is superior to 
forward selection, but provides no evidence con- 
cerning their relative performance. 

Different methods rely upon different statis- 
tical criteria for adding or deleting effect pa- 
rameters. Goodman (1971) advocates the use of the 
difference chi- square test statistic, which is the 
difference in chi -square values for two models, 
one including the parameter and one excluding it. 

A statistically significant difference between the, 
two models implies that the effect is significant 
and must be included in the final model. Higgins 
and Koch (1977) rely upon chi -square divided by 
its degrees of freedom to assess the magnitude of 
an effect parameter. Goodman (1971) also advo- 
cates significance tests of the standardized pa- 
rameter estimates as a criterion for inclusion in 
a model. Benedetti and Brown (1976) suggest that 
with large samples selection should not be based 
upon statistical significance, and advocate the 
selection of a model which explains a certain 
fraction of the lack of fit of a baseline model. 

In all of these cases, the researcher must 
also determine the a -level to be used as the cri- 
terion of acceptance or rejection of parameters 
and models. Most applications rely upon conven- 

tional a levels of .05 or .10, but there is no ev- 
idence that these levels produce optimal results 
for any or all of the procedures. (In the context 
of linear regression, a- levels of .10 or .05 do 

not produce optimal results for all selection pro- 
cedures.) Perhaps for this reason Goodman (1971) 

cautions against strict interpretations of signif- 
icance levels associated with models, suggesting 
that they should be used as a simple way of taking 

account of degrees of freedom in assessing the 
relative goodness of fit of different models. 

There have been few studies which assess the 

adequacy of different techniques and decision 
rules for selecting log linear models. One excep- 
tion is Benedetti and Brown (1976), who use real 
world contingency table data to evaluate forward 
selection, backward elimination, direct 



estimation, and other procedures. Using as a 
criterion of success the selection of a model 
which cannot be significantly improved by adding 
parameters, and from which parameters cannot be 
dropped, they find that forward selection, back- 
ward selection, or a combination of the two per- 
forms most adequately. They recommend against 
the use of simultaneous tests to screen models 
from consideration, because they find that prior 
screening led to the exclusion of relevant param- 
eters from the selected model. In addition, they 
recommend against the use of the difference chi - 
square when samples are large, arguing that such 
tests will always be statistically significant 
with large samples, and that a more appropriate 
criterion is selection of a model which explains 
a certain fraction of the lack of fit of a base- 
line model. 

Although the Benedetti and Brown study is use- 
ful, the conclusions which can be drawn from two 
sets of analyses are limited. In addition, be- 

cause the study is based upon analysis of real 
data, it is not known which (if any) of the se- 

lection procedures arrived at the true population 
model. Analyses based upon artificial data with 
known properties provide a more systematic basis 
for comparing different procedures. There have 
been a number of such simulation studies of pro- 
cedures for selecting linear models. Although 
the findings may not be generalized directly to 
the log linear case, they are relevant to the is- 
sues raised here. The findings suggest that the 
performance of different linear regression model 
selection procedures depends in a complex fashion 
upon the data analysis situation. Dempster, 
Schatzoff, and Wermuth (1977) find that the per- 
formance of different selection procedures is af- 
fected by collinearity and multicollinearity 
among independent variables, centrality in the 

original model, and the pattern of true regres- 
sion coefficients. In addition, the choice of 
significance level has an inconsistent effect 
upon the accuracy of stepwise selection proce- 
dures which rely upon significance tests as deci- 
sion criteria. Based upon a simulation analysis, 
Kennedy and Bancroft (1971) recommend sequential 
deletion (using an a -level of .25) over forward 
selection. They further find that no single a- 
level is universally superior for all combina- 
tions of parameter values. Finally, Bendel and 
Afifi (1977) find that the relative performance 
of different stopping rules in forward stepwise 
regression depends upon sample size and the num- 
ber of effect parameters. They recommend that 
the a -level used with backward elimination be 
half that used with forward selection. 

The complexity of model selection in the 
linear regression context suggests the importance 
of evaluating procedures for selecting log linear 
models. The present paper offers preliminary 
findings of a Monte Carlo investigation of se- 
lecting models to describe multidimensional con- 
tingency tables. Two factors which affect the 
performance of algorithms for selecting linear 
regression models (the characteristics of the 
true population model and the size of the sample) 
are systematically varied. The results suggest 
that the selection procedures generally perform 
well, although the adequacy of different proce- 
dures depends upon the data analysis situation. 
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Method 

The present analysis attempts to replicate 
typical analysis problems by simulating a variety 
of data analysis situations. The characteristics 
of the true model are varied, and the size of the 
sample is varied from 50 to 8000. It should be 
noted at the outset, however, that all of the 
simulations are based upon four -way cross- classi- 
fications of dichotomous variables, and that all 
models are relatively simple. We further assume 
that: 

1. One true population model gives rise to 
the observed data. 

2. All relevant variables and no irrelevant 
variables are included in the model. 

3. Although the form of the equation is un- 
known, the correct model is hierarchical. 
That is, inclusion of a higher order 
term necessarily results in inclusion of 
lower order terms involving the same 
variables. (E.g. if the three -way in- 
teraction pertaining to variables A, B, 

and C is included, then all two -way and 
one -way effects involving A, B, and C 

are also included.) 
Model selection procedures are compared ac- 

cording to how accurately they identify the cor- 
rect form of the population model. Thus, a 
"true" model is one which includes all relevant 
effect parameters, and excludes all irrelevant 
effect parameters. The rationale for this broad 
definition is that in the exploratory stages of 
research the presence or absence of an effect is 
very often of primary interest; it is this aspect 
of specification error that is the focus of the 
present study. 

The true models used to generate the simu- 
lated data are reported in Table 1. The only dif- 
ference between the five hypothetical models is 

the magnitude of the three -way interaction per- 
taining to variables A, B, and C, which varies 
from .00 in Model 1 to .55 in Model 5. Based upon 
the true population parameters, the multinomial 
distributions underlying each of the five models 
are calculated and used to generate random samples 
via computer algorithm. Fifty replications are 

generated for each combination of model type and 
sample size. The selection algorithms are then 
applied to each random sample to identify models 
which describe the data. 

The selection procedures compared here are 
discussed by Goodman (1971, 1973), Bishop, Fien- 
berg, and Holland (1975), Benedetti and Brown 
(1976) and others.1 In the first set cf analyses, 
a significance level of a = .05 is used for all 
steps in the selection methods. The methods are: 

1. Direct estimation. Goodman (1971, 1973) 
advocates the use of direct estimation as a guide 
to further stepwise selection of models; here it 

is applied as a procedure to select a final model. 
Under the null hypothesis of no effect, standard- 
ized parameter estimates are distributed normally 
and may be tested directly for statistical signif- 
icance. Standardized parameter estimates in the 
saturated model are tested (using a critical value 
of 1.96) and non -significant parameters are de- 
leted, unless deletion would result in a non -hier- 
archical model. Zero cells in the multiway table 
are replaced by 1/2 prior to estimating the 



parameters of the saturated model. (This practice 

conforms to Goodman's recommendation in 1964 (see 

p. 633) but not his later recommendation to add 

1/2 to all cells.) 

Table 1. Effect parameters for simulated samples 

X effect 
pertaining to: 1 

Non -standardized X 

effects for Model: 
2 3 4 5 

A .00 .00 .00 .00 .00 

B .00 .00 .00 .00 .00 

C .00 .00 .00 .00 .00 

D .00 .00 .00 .00 .00 

AB .25 .25 .25 .25 .25 

AC .25 .25 .25 .25 .25 

AD .25 .25 .25 .25 .25 

BC .25 .25 .25 .25 .25 

BD .25 .25 .25 .25 .25 

CD .25 .25 .25 .25 .25 
ABC .00 .10 .25 .40 .55 

ABD .00 .00 .00 .00 .00 

BCD .00 .00 .00 .00 .00 

ABCD .00 .00 .00 .00 .00 

2. Backward elimination. Models are se- 
lected by deleting parameters in a stepwise fash- 
ion from a model. The decision to delete a param- 
eter is based upon the statistical significance of 
the difference chi -square values2 comparing two 
models which differ by the presence or absence of 
the parameter in question. The backward elimina- 
tion algorithm first tests parameters of the high- 
est order, and proceeds in systematic fashion to 
tests of lower order terms; at each stage, the pa- 
rameter associated with the minimum p -value for 
the difference chi -square is deleted. That is, 

the term which contributes least to the overall 
goodness -of -fit of the model is eliminated. Dele- 
tion of parameters stops when further deletion 
would result in a statistically significant loss 
of fit, or when the goodness of fit of the overall 
model falls below the specified rejection level. 

The model from which parameters are deleted 
may be either: 

a) The saturated model including all main and 
interaction effects, or 

b) A homogeneous baseline model which is se- 
lected as an initial best -fitting model. 

Homogeneous models which include terms of 
uniform order (i.e. for an n -way table, models 
which include all terms of order 1, 2, . . k, 

k + 1, . . n) are sequentially compared using 
the difference chi - square to assess differences in 

goodness of fit. If the highest order (n -way) in- 

teraction is statistically significant, selection 
is terminated and the saturated model is selected 
(without further stepwise testing) as the final 
model. Otherwise, the baseline model is chosen as 

the model of order k, where k is the lowest order 
model (1) which fits acceptably (p > .05), (2) 

which fits significantly better than the model of 
order k - 1, and (3) which is not improved by the 
addition of all terms of order k + 1. Terms are 
then deleted in stepwise fashion from the kth or- 
der model.3 

3. Stepwise forward selection. Models are 

built by adding parameters in a sequential fashion 

to a baseline model, beginning with lower order 

terms and proceeding in systematic fashion to 
higher Order terms. The algorithm is analogous to 
backward elimination, except that at each stage 
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the parameter which Most iMptoves the goodness of 
fit is added. (That is, the term associated with 
the highest p -value for the difference chi -square 
is added.) The baseline model is selected using 
the procedure described for (2b), except that the 
baseline model is of order k - 1. Addition of 
parameters stops when no further addition results 
in a statistically significant improvement in 
goodness of fit. 

Results 

Results are found in Table 2; each entry 
represents the proportion of 50 replications for 
which the true model is selected using different 
selection strategies when sample size and the hy- 
pothetical population model are varied. 

When averaged over samples of varying size 
and different population models, the data suggest 
relatively small overall differences in the suc- 
cess of the four model selection strategies. The 
proportion of correct selections in 2000 replica- 
tions varies from .64 for backward elimination 
from the saturated model to .53 for direct esti- 
mation. However, the relative and absolute per- 

formance of different selection procedures varies 
according to the data analysis situation. 

Not surprisingly, the probability of select- 
ing the correct model is considerably greater 
when samples are large than when they are small, 

regardless of which selection procedure is used. 
However, sample size has a greater effect upon 

the accuracy of some procedures than others. Di- 

rect estimation performs very poorly, and worse 

than any of the stepwise procedures, when samples 

are small. For n < 250, the proportion of cor- 
rect selections using direct estimation is .14, 

while the stepwise procedures select the true 

model for an average of .40 of the replications 
in samples of the same size. When samples are 
large (n > 500), average differences in accuracy 

among selection procedures are small; the propor- 

tion of correct selections is about .77 for all 

techniques. Sample size has a nonmonotonic ef- 

fect upon the accuracy of selection procedures. 
All four techniques are most likely to select 

true models for sample sizes of 2000 or 4000, 
with accuracy declining somewhat in larger sam- 
ples. 

The nature of the true population model af- 

fects the likelihood that a correct selection will 

be made using any of the search procedures. When 

the true model contains a small three -way inter- 

action effect (ABC = .10 in Model 2),no searchpro- 
cedure reliably selects the correct model unless 

the sample size is 2000 or larger. This finding 

suggests that if a small effect is theoretically 

or practically important, a relatively large sam- 

ple is required to detect it reliably using the 

procedures examined here. In contrast, when the 

true model includes a large interaction term (ABC 

.40 and .55 for Models 4 and 5, respectively) 

the stepwise procedures select the true model for 

over half of the replications even in samples of 

size 50. 
The relative advantage of different model 

selection strategies also depends upon the true 

population model. Comparison of results for mod- 

els 2 -5 indicates that the larger the ABC inter- 

action term, the more likely the three stepwise 



Table 2. Selection of "true" model using four selection strategies and varying sample size and the char- 
acteristics of the true model. 

Sample Size 

50 100 250 500 1000 2000 4000 8000 Total 

Model 1 (ABC .00) 

Backward deletion from 
saturated model .00 .00 .36 .56 .72 .82 .78 .72 .50 

Backward deletion from 
baseline model .00 .02 .46 .82 .90 .90 .98 .82 .61 

Forward selection from 
baseline model .02 .04 .40 .56 .72 .84 .78 .72 .51 

Direct estimation .00 .04 .32 .64 .80 .78 .80 .68 .51 

Model 2 (ABC = .10) 

Backward deletion from 
saturated model .04 .08 .24 .38 .40 .82 .86 .78 .45 

Backward deletion from 
baseline model .04 .02 .04 .18 .32 .72 .86 .78 .37 

Forward selection from 
baseline model .04 .02 .16 .38 .38 .72 .86 .78 .42 

Direct estimation .00 .00 .22 .35 .40 .74 .86 .80 .42 

Model 3 (ABC .25) 

Backward deletion from 
saturated model .16 .36 .82 .76 .84 .96 .86 .86 .70 

Backward deletion from 
baseline model .10 .20 .72 .76 .84 .96 .86 .86 .66 

Forward selection from 
baseline model .10 .20 .80 .78 .84 .96 .88 .86 .68 

Direct estimation .00 .03 .55 .80 .84 .94 .82 .84 .60 

Model 4 (ABC .40) 

Backward deletion from 
saturated model .62 .72 .76 .84 .76 .80 .84 .74 .76 

Backward deletion from 
baseline model .52 .50 .76 .84 .76 .80 .84 .74 .72 

Forward selection from 
baseline model .56 .50 .78 .84 .76 .80 .84 .76 .73 

Direct estimation .00 .07 .40 .84 .82 .82 .88 .78 .58 

Model 5 (ABC = .55) 

Backward deletion from 
saturated model .60 .84 .86 .80 .82 .86 .84 .72 .79 

Backward deletion from 
baseline model .52 .84 .86 .80 .82 .86 .84 .72 .78 

Forward selection from 
baseline model .54 .86 .86 .80 .82 .86 .84 .74 .79 

Direct estimation .00 .04 .40 .63 .88 .86 .90 .76 .56 

Total 
Backward deletion from 

saturated model .28 .40 .61 .67 .71 .85 .84 .76 .64 

Backward deletion from 
baseline model .24 .32 .57 .68 .73 .85 .88 .78 .63 

Forward selection from 
baseline model .25 .32 .60 .67 .70 .84 .84 .77 .63 

Direct estimation .00 .04 .38 .65 .75 .83 .85 .77 .53 

procedures are to select the true model. In con- the true model includes small higher order terms 
trast, the accuracy of the direct estimation pro- (as is the case for Model 2) but is an advantage 

cedure is relatively unaffected by the nature of when such terms merely represent "noise" (as is 

the population model. Consequently, the relative the case for Model 1). 

superiority of the stepwise selection procedures All four procedures for selecting a log lin- 
over direct estimation increases as the size of ear model to describe a multiway contingency ta- 
the ABC interaction term is increased. ble rely upon criteria of statistical signifi- 

Differences among the three stepwise selec- cance to accept or reject individual parameters 

tion procedures are relatively small. Backward and models. There has been little investigation 

elimination from a homogeneous baseline model per- of an appropriate a -level to select log linear 

forms better than other procedures when the under- models, although as noted the optimal signifi- 

lying population model is homogeneous, as is Model cance level for selecting linear models generally 

1, which includes all two -way interaction terms. differs according to procedure, and is usually 

Backward elimination from a baseline model appears higher than a conventional a of .05. Some atten- 

to be less sensitive to the presence of small tion was therefore given to the questions of an 

higher order interaction terms than the other appropriate level of significance to be used as 

stepwise procedures; this is, a disadvantage when the criterion of rejection, and at what stage in 
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the selection process the stopping rule should be 
invoked. 

Table 3 presents the results of varying the a 
level used to select models which describe Model 3 

samples, employing backward elimination from a ho- 
mogeneous baseline model. The results are some- 

what surprising. It was thought that use of a 

less stringent a level (e.g. .10) might improve 
the accuracy of model selection procedures when 
samples are small, but this proved not to be the 
case. Instead, a more stringent a of .01 yielded 
improved accuracy when averaged over all sample 
sizes; the small decrease in accuracy for samples 
of size 100 or less is more than balanced by im- 
provements in accuracy for larger samples. An a- 
level of .01 implies that a parameter is included 
in a model only if it is statistically significant 
at the .01 level. More controversially, an a lev- 
el of .01 implies that a model is rejected only if 
it is associated with a probability of .01 or 
less. It is counterintuitive that a strategy 
which accepts models which fit so poorly by con- 
ventional standards is nevertheless most likely 
to lead to selection of the true model, especially 
when samples are large. Similar results are found 
for forward selection, and hold as well when test- 
ed using Model 1 samples. Although further inves- 
tigation of appropriate a levels is warranted, 
these results tentatively suggest that an a -level 
of .01 may produce better results than a- levels 
of .05 or .10 when samples are 250 cases or larg- 
er. 

Table 3. Proportion of correct selections for 
different levels of a. 

Sample size a .01 .05 .10 .25 .50 

50 .06 .10 .10 .00 .00 

100 .10 .20 .22 .08 .02 

250 .76 .72 .72 .24 .02 

500 .90 .76 .66 .38 .02 

1000 .92 .84 .66 .26 .04 

2000 .98 .96 .41 .42 .14 

4000 .98 .86 .68 .28 .06 

8000 .94 .86 .72 .38 .06 

Total .71 .66 .52 .26 .04 

A second issue is the question of when in 
the search process stopping rules should be in- 
voked. The stepwise selection procedures used 
here terminate search when overall goodness of fit 
of the selected model falls below the specified 
rejection level. The criterion that the selected 
model must be associated with a probability of .05 

or greater is applied not only to the final selec- 
tion, but to all intermediate models in the step- 
wise selection process. This is particularly 
problematic for backward elimination if, for exam- 

ple, lower order models fit well although higher 
order models fit poorly. This may occur when de- 
letion of higher order terms adds degrees of free - 

'dom but does not much reduce goodness of fit. If 

the stopping rule is invoked at an intermediate 
stage, search will terminate before good- fitting, 
lower order models are tested. It is possible 

that the search process would be improved if the 

criterion for overall goodness of fit of a model 

is applied only to the final model which results 
from the search. 

A possible example of premature termination 
of the search process occurs when the highest or- 

der (four -way) interaction term is statistically 
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significant. In this case, all four selection 
procedures terminate search and select the satu- 
rated model as the final model. For the 2000 
samples analyzed in Table 2, the four -way inter- 
action is significant at the .05 level in 118 
samples (or for .06 of the replications, which is 

slightly greater than the chance expectation un- 
der the null hypothesis). Of course, in all 
cases the four -way term represents random varia- 
tion, since it is included in none of the true 
models. In addition, in many cases lower order 
models fit the data well. If the search for a 
good- fitting model is continued ignoring the sig- 
nificant four -way interaction term, the true mod- 
el is selected (and fits acceptably) in 48 of the 
118 samples. Thus, for the models considered 
here, the likelihood of selecting a true model is 
marginally improved if stopping rules are not em- 
ployed to terminate search. 

Discussion 

When averaged over sample sizes and model 
types, the results indicate relatively small 
overall differences in the performance of differ- 
ence selection strategies for the data analysis 
situations simulated here. The principal finding 
is that direct estimation performs worse than any 
of the stepwise procedures, due mainly to its 

relatively poor performance when samples are 
small and the true model includes a large inter- 
action term. Thus, the results of the simulation 
suggest that if the researcher has identified the 
appropriate set of variables to analyze, if the 

population model is hierarchical and relatively 
simple, and if one of thestepwise procedures is 

used, the true model may be selected with proba- 
bility between about .25 and .90, depending upon' 
the size of the sample. The results suggest that 

these model selection procedures (particularly 

direct estimation) should generally not be ap- 

plied to very small samples (n < 250). However, 

even direct estimation performs quite well for 
large samples, suggesting that Goodman (1971) may 

be too cautious in his recommendation against the 
use of standardized X's as a simple guide to the 

selection of models. 
When samples are large, the simple strate- 

gies analyzed here perform relatively well and 
about equally. This suggests that there may be 

little need for the complex, multidirectional se- 

lection strategies such as those proposed by 
Goodman (1971, 1973) and Benedetti and Brown 

(1976). Of course, it must be emphasized that 

four -way tables characterized by relatively sim- 

ple hierarchical models have been simulated; the 

results reported here may not generalize to larg- 

er tables or more complex situations. Neverthe- 

less, an emphasis upon the development of many 

alternative methods for selecting models may be 

misplaced. Instead, it may be more appropriate 

to focus attention upon other important issues 

concerning the selection of descriptive models 

for categorical data. One such issue is the ne- 

glected problem of how variables should be se- 

lected for inclusion in an analysis. Koch and 

his students have recently developed criteria for 

the selection of variables (see e.g. Higgins and 

Koch, 1977) although the adequacy of such proce- 

dures has not been evaluated. 



Finally, the results reported here are ger- 
maine to two points made by Benedetti and Brown 
(1976). The recommend against the selection of a 

homogeneous baseline model prior to application 

of stepwise procedures, because it may lead to 

the exclusion of relevant parameters. Comparison 
of the results obtained by backward elimination 
from a saturated versus homogeneous baseline mod- 
el indicates that when models are not screened, 
backward deletion is somewhat more sensitive to 

the presence of interaction effects (i.e. in Mod- 
els 2 -5) but is also more likely to detect inter- 
action where there is none (i.e. in Model 1). 

Thus, neither method is superior in all data 
analysis situations. Benedetti and Brown (1976) 
also argue that for large samples the difference 
chi -square should not be used as the criterion 
for inclusion of terms, and that a more appropri- 
ate test would be based upon explained variance. 
Although the two decision rules are not compared 
here, the results do not indicate that the dif- 
ference chi- square is an inappropriate statisti- 

cal criterion for model selection. The perfor- 
mance of the search procedure may be improved, 
especially for large samples, by using an a level 

of .01 as the criterion for acceptance or rejec- 
tion of models and parameters. 

Footnotes 

1Stepwise model selection is carried out by a cat - 

puter program (MAT) developed at the University 
of Chicago and modified at the University of 
Michigan, the University of North Carolina and 
Duke University. 

2 

3 

The difference chi -square for a model M1 and a 
model M containing additional effect parame- 
ter(s) is calculated as - , with degrees of 
freedom df - df . A difference chi -square val- 
ue associated with p < .05 indicates that M2 
fits significantly better than M1, and the 

term(s) in M should therefore be retained. If 

p > .05 the terms) in M do not make a signifi- 
cant contribution to goodness of fit and may be 
deleted. 

This procedure differs somewhat from that de- 
scribed by Bishop, Fienberg, and Holland (1975, 

p. 157 -8). Backward elimination is not confined 
to intervening models which include all terms of 
order k - 1 and some or all terms of order k, 

but may delete terms of order k - 2, etc. How- 

ever, if terms of order k are statistically sig- 
nificant and must be included in a model, then 

terms of order k - 2 will not be tested or de- 
leted using the stepwise algorithm employed here. 
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